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Foundation of Society

• Food, Water, and Electricity

• Ethics, Liberty, Equality, Freedom of Speech, 
Justice
– (regardless of race, ethnicity, gender, and age)

• Access to Information
– Telephone, Entertainment, Internet

• Universal wireless connectivity!



Outline

• Searching for spectrum in a seemingly 
crowded space

• New models for spectrum sharing:

– Underlay technologies such as UWB

– Overlay technology such as Cognitive Radio

– Unused spectrum such as 60 GHz



Spectrum Allocation



3-10 Ghz is crowded?



Spectrum Reality

• Measurements 
performed in 
downtown 
Berkeley (BWRC)

• 3-6 GHz poorly 
utilized



2.4 GHz Band



Cognitive Radio

• Assign primary users to spectrum

• Allow non-primary users to utilize spectrum if 
they can detect non usage

• If primary users needs spectrum, move to a 
new frequency band



Backyard Question

• If someone walks through your backyard while 
you’re on vacation, do you mind?

• By the way, there’s no way you’ll ever know 
this happened. Are you still worried about it?



Café Analogy

• At a restaurant, seats 
are assigned.

• Where do you sit at a 
café?



Cafe Seating Policy

• If you arrive in an empty cafe, you 
take the first seat. Probably the best 
seat ...

• After the last table (next to kitchen or 
worse) is occupied, where do you go?

• Why not share a table? Which table 
do you share? The biggest and 
“prettiest” one ...

• But why not sit at those “reserved” 
tables?



UWB (Sit Under the Table)

• Build a radio that utilizes existing spectrum 
without interference to “primary” users

• Transmit power below EMI mask of -41.3 
dBm/MHz (bury yourself in noise)

• Utilize coding and large bandwidth to transmit 
information

• They can’t see you , but you can see them!

– “Radar”



Big Tables at 60 Ghz

• But there’s lots of bandwidth to be had! 7 GHz of 
unlicensed bandwidth in the U.S. and Japan

• Same amount of bandwidth is available in the 3-10 
UWB band, TX power level is 104 times higher!



New Paradigms

• Underlay: Restrict transmit power and operate 
over ultra wide bandwidths (UWB)

• Far away: Operate in currently unused 
frequency bands (60 GHz)

• Overlay: Share spectrum with primary users



Comparison

UWB 60 GHz CR

Spectrum Access Underlay Unlicensed Overlay

Carrier [0-1],[3-10] GHz [57-64] GHz [0- ] GHz

Bandwidth > 500 MHz > 1 GHz > 1 GHz

Data Rates ~ 100 Mb/s ~ 1 Gb/s ~ 10-1000 Mb/s

Spectral Efficiency ~0.2-1 b/s/Hz ~ 1 b/s/Hz ~ 0.1-10 b/s/Hz

Range 1-10 m 1-10 m 1m – 10 km



UWB

Under the Table



UWB

According to the FCC:

“Ultrawideband radio systems typically employ pulse
modulation where extremely narrow (short) bursts of
RF energy are modulated and emitted to convey
information. … the emission bandwidths … often
exceed one gigahertz. In some cases “impulse”
transmitters are employed where the pulses do not
modulate a carrier.”

Federal Communications Commission,
ET Docket 98-153, First Report and Order, Feb. 2002



OFDM or Pulses?

• Well known sinusoidal approach based on OFDM

• New approach based on short pulse transmission

• Unknown ultimate performance and implementation 
advantages (or disadvantages)

• New applications – e.g. locationing and imaging

N sinusoidal carriers

B

Time

FrequencyB

Impulses



More “Digital” Radios



Sampling Short Pulses



Wideband Quadrature



UWB Summary

• Fundamentally a new approach for data 
transmission

• Use digital processing to reducing dependence 
on sampling timing offsets with only one A/D

• Simple architecture – “mostly digital”

• Possibility of other new advantages and 
applications (ranging and imaging)



60 GHZ

Big Free Table



Thirst for Bandwidth
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Last inch, Last mile



Extension of Portable

• Extended display for device
– PDA

– Digital camera

– Video camera

• Wireless USB
– Storage

– Printer

• Data transfer 
– Digital Camera

– Video Camera

– Sync

– Music

– Movies



Automotive Radar

• Safety, improved functionality, automatic cruise 
control …
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Fear of 60 GHz

• Does the lumped circuit approximation even hold?

• How do you model the FET?

• Won’t the circuit just radiate way like crazy?

• Substrate losses will be a killer !

• I’m having trouble with 5 GHz models … how do you 
expect to design at 10 times this frequency?

• Noise goes up with frequency … can’t do a low noise 
system.

• Signal propagation is really bad.

• Materials are lossy at this frequency.

• …



Can we do it in Si?  CMOS?

• High path loss at 60 GHz (relative to 5 GHz) → high gain

• Silicon substrate is lossy → low Q

• CMOS building blocks at 60 GHz

• Design methodology for CMOS mm-wave

• CMOS is inexpensive and shrinking → higher speeds 

• Antenna elements are small → integration into package 
(multiple transceivers on a single chip) 

• Beam forming → improve antenna gain, spatial diversity 
(resilience to multi-path fading)

• Spatial power combining → PAs easier



Our Vision

• A fully-integrated low-cost Gb/s data communication 
using 60 GHz band.

• 10 element array with 10 dB gain implies that a 10 mW
PA → 1W isotropic radiator



Antenna Array Properties

• Antenna array is dynamic and can 
point in any direction

• Enhanced receiver/transmitter 
antenna gain (reduced PA power, 
LNA NF) 

• Improved diversity

• Reduced multi-path fading

• Null interfering signals

• Capacity enhancement through 
spatial coding



Modeling at 60 GHz

• Transistors
– Compact model not verified near fmax/ft

– Table-based model lacks flexibility

– Parasitics no longer negligible

– Highly layout dependent

• Passives
– Need accurate reactances

– Loss not negligible

– Scalable models desired

– Allows comparison of arbitrary structures

Accurate models required for circuits operating 

near limit of process



CMOS Modeling Issues

• Active device performance highly layout dependent



Maximum Available Gain

• 60 GHz barely in the money at 130nm.

Gate

Source

fmax in GHz



Moore’s Law

• 90nm CMOS custom layout

• Fmax=300 GHz (extrapolated), Fmax/Ft=3



60 GHz LNA



S-Parameter Sim/Measurements 

S11 S12

S21 S22



Highly Integrated Front-End

• Includes LNA, mixer, frequency doubler, VCO, LO and IF buffers.  

• Die size: 3.8mm2



Measured Performance

• Input referred P1dB is -15.8dBm

• Phase noise of 86dBc/Hz at 1MHz offset.

• Total power dissipation is 64mA from a 1.2V supply.



Handling 7 GHz of Bandwidth

• “Simple” modulation scheme like FSK 
simplifies circuit requirements

• Linearity, PA efficiency, noise, phase noise

• But, still need high-speed ADCs (power 
hungry)

• Minimize ADC resolution to solve power 
problem

– From 6 bit to 4 bit 10x power reduction possible



Effect of Multipath

• Digital equalization removes ISI but need more bits in 
ADC

TX ADCRX
Digital

EQ

Vpp=2 Vpp=4 Vpp=4 Vpp=2

Multipath
channel

h(t)

t



Analog to the Rescue

ADCRX
Analog

EQ
EQ coeff.

estimation

Vpp=4 Vpp=2 Vpp=2



“Hybrid-Analog” Architecture

RF
IF

LOIF

BBI

BBQ

BB’I

BB’Q

Clk

Timing, DFE 
Carrier Phase,

Estimators
VGA

Clock Rec

Complex
DFE

Analog

Digital

• Synchronization in “hybrid-analog” architecture
– ESTIMATE parameter error in digital domain

– CORRECT for parameter error in analog domain

• Greatly simplifies requirements on power-hungry 
interface ckts (i.e. ADC, VGA)
– Additional analog hardware is relatively simple

ejq

Proposed Baseband 
Architecture



COGNITIVE 

RADIO

Unused Reserved Tables



How does a CR operate?

– sense the spectral environment over a wide bandwidth

– reliably detect presence/absence of primary users

– transmit in a primary user band only if detected as unused

– adapt power levels and transmission bandwidths to avoid 
interference to any primary user 

P
SD

Frequency

PU1

PU2

PU3

PU4



Can you hear me?

• If a CR cannot detect the presence of a primary user, 
that doesn’t mean it’s unused!

• Broadcast receiver is a classic example. The CR may 
be in a signal fade nearby and jam a TV station since 
it thinks no one is



Wideband Sensing Radio

wideband
antenna

A/D

RF Filter

LNA

Huge dynamic 
range

High speed 
A/D 

converter

AGC

Multi-GHz  A/D -> Nyquist sampling
High A/D resolution  (> 12 bits)

Frequency: RF MEMS filter bank
Time: Active cancellation 
Spatial: Filtering using multiple antennas

Challenging specifications: 

Dynamic range reduction:



Spatial Filtering

Poon, Tse, Brodersen[2004]

Primary user f1

Primary user f2

• Point antenna array at 
cognitive radio transmitter –
avoid interferers 

• Combine antenna outputs in 
analog domain to reduce 
dynamic range



CR Challenges

• Wide bandwidth circuits to allow for more 
opportunity to find unused spectrum

• Co-existence with primary users requires a 
high dynamic range required over these wide 
bands

• Need highly reliable sensing of even weak 
primary users



From Super-Het to Low IF

• Fully integrated radios low-IF or zero-IF to reduce IF SAW filters

• RX FE integrated in a single chip. PA is a separate chip or module.

• Radio optimized for a specific standard (image rejection, 
linearity, filtering, bandwidth)



Typical External Components

• Systems heavily dependent on external components on 
the front end: SAW filters, switches, directional 
couplers, matching networks, pin diode, diplexers …

• Many of these components are expensive (high Q) and 
narrowband



HIGH DYNAMIC RANGE 

BROADBAND CIRCUIT 

BUILDING BLOCKS

Can CMOS do it?



Multiplicity of Standards

• Cellular voice:  GSM, CDMA, 
W-CDMA, CDMA-2000, 
AMPS, TDMA…

• Same standard over 
multiple frequency bands 
(4-5 GSM bands exist today)

• Data:  802.11x, Bluetooth, 
3G, WiMax…

• A typical handheld 
computer or laptop should 
be compatible with all of 
the above standards 
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SDR, Universal, Cognitive,Dynamic?

• Loose definitions:
– SDR:  Reprogram the baseband

– Universal:  Multi-standard

– Multi-mode:  short/long range, high/low data

– Cognitive:  Ability to sense spectrum and use it

– Dynamic:  Ability to alter bias currents to tradeoff 
performance versus power 

consumption

• RF front-end of future should support all of 
the above functionality

COGUR:  Cognitive Universal Radio



  ADC

  ADC

DSP

RXRF RXBB Digitizer

LO

COGUR Front-End

low noise/power, high dynamic range/reconfigurability



Target Specifications:

BW 0.8~2.4GHz

Gain > 25dB, NF < 2.5dB

 IIP3 > 0dBm, IIP2 >55dBm

COGUR Approach

Our 

Approach
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Noise & Disto Cancellation LNA
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Optimal choice subject to 

fewer design parameter 

variations
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MGTR (Multi-Gated Transistor)
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Measured Noise and Linearity

• Record linearity of +16 dBm for out of 
band blockers.

• Linearity works over entire LNA band.



Wideband I/Q Passive Mixers

• Complementary input for higher gm 
and linearity

• Passive switching to get low 1/f noise
• Implemented as a I/Q mixer with 

integrated on-chip divider

Process Technology 0.13 CMOS

Input Frequency 

Range

0.7GHz – 2.5GHz

First Filter Pole 250 kHz

Total Bias Current 20mA-24mA (1.5 V)

Conversion Gain 38.5dB

IIP3@1MHz Offset 900 MHz 2.1 GHz

+11 dBm +12 dBm

IIP2@1MHz Offset +66dBm +64 dBm

NF@1MHz IF 10dB 10.5 dB

1/f Corner 10 kHz 26 kHz

LO-RF Leakage -74dBm rms



VCO 

Core

O/P 

Buffer

Peak 

Det. & 

Comp.

Broadband “Universal” VCO

• A 1.8 GHz LC VCO (0.18µm CMOS )

• 1.3 GHz Tuning Range  

• Mixed-signal Amplitude Calibration

• Phase noise of –104.7dBc/Hz at a 
100kHz 

• 3.2mA from a 1.5V supply 



Integrated Linear CMOS PA

• Fully 130nm CMOS 
integrated prototype

• 27 dBm (30% efficiency)

• Linear mode: 24 dBm (25%)

• No external passives



Prototype PA in Digital CMOS

• Four stage differential design

• Fully integrated matching

• Thin oxide 90nm transistors

• 24 dBm, 27% efficiency 

• 1V Power Supply



Conclusions

• FCC has provided exciting new opportunities for 
new radio systems
– UWB

– Unlicensed 7 GHz at 60 GHz

– Cognitive Radios

• These provide new circuit challenges dealing with 
high frequencies, wide bandwidths and large 
dynamic ranges

• The key to the solution will require new 
approaches to analog and digital partitioning
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